#include<stdio.h> int main() { char *str; str = "%s"; printf(str, "K\n"); return 0; }
#include <stdio.h> void fun(char**); int main() { char *argv[] = {"ab", "cd", "ef", "gh"}; fun(argv); return 0; } void fun(char **p) { char *t; t = (p+= sizeof(int))[-1]; printf("%s\n", t); }
The output for the above program will be cd in Windows (Turbo C) and gh in Linux (GCC).
To understand it better, compile and execute the above program in Windows (with Turbo C compiler) and in Linux (GCC compiler).
#include<stdio.h> int main() { int x = 3; float y = 3.0; if(x == y) printf("x and y are equal"); else printf("x and y are not equal"); return 0; }
#include<stdio.h> int main() { int i=1; if(!i) printf("CuriousTab,"); else { i=0; printf("C-Program"); main(); } return 0; }
Step 2: if(!i) Here the !(NOT) operator reverts the i value 1 to 0. Hence the if(0) condition fails. So it goes to else part.
Step 3: else { i=0; In the else part variable i is assigned to value 0(zero).
Step 4: printf("C-Program"); It prints the "C-program".
Step 5: main(); Here we are calling the main() function.
After calling the function, the program repeats from step 1 to step 5 infinitely.
Hence it prints "C-Program" infinitely.
#include<stdio.h> int main() { void fun(); int i = 1; while(i <= 5) { printf("%d\n", i); if(i>2) goto here; } return 0; } void fun() { here: printf("It works"); }
Syntax: goto <identifier> ;
Control is unconditionally transferred to the location of a local label specified by <identifier>.
Example:
#include <stdio.h>
int main()
{
int i=1;
while(i>0)
{
printf("%d", i++);
if(i==5)
goto mylabel;
}
mylabel:
return 0;
}
Output: 1,2,3,4
#include<stdio.h> int main() { int i; i = scanf("%d %d", &i, &i); printf("%d\n", i); return 0; }
printf("%d\n", i); Here it prints 2.
#include<stdio.h> int main() { printf("%d, %d, %d", sizeof(3.0f), sizeof('3'), sizeof(3.0)); return 0; }
printf("%d, %d, %d", sizeof(3.0f), sizeof('3'), sizeof(3.0));
The sizeof function returns the size of the given expression.
sizeof(3.0f) is a floating point constant. The size of float is 4 bytes
sizeof('3') It converts '3' in to ASCII value.. The size of int is 2 bytes
sizeof(3.0) is a double constant. The size of double is 8 bytes
Hence the output of the program is 4,2,8
Note: The above program may produce different output in other platform due to the platform dependency of C compiler.
In Turbo C, 4 2 8. But in GCC, the output will be 4 4 8.
#include<stdio.h> int main() { int k=1; printf("%d == 1 is" "%s\n", k, k==1?"TRUE":"FALSE"); return 0; }
Step 2: printf("%d == 1 is" "%s\n", k, k==1?"TRUE":"FALSE"); becomes
=> k==1?"TRUE":"FALSE"
=> 1==1?"TRUE":"FALSE"
=> "TRUE"
Therefore the output of the program is 1 == 1 is TRUE
#include<stdio.h> int main() { int fun(int); int i = fun(10); printf("%d\n", --i); return 0; } int fun(int i) { return (i++); }
Step 2: int i = fun(10); The variable i is declared as an integer type and the result of the fun(10) will be stored in the variable i.
Step 3: int fun(int i){ return (i++); } Inside the fun() we are returning a value return(i++). It returns 10. because i++ is the post-increement operator.
Step 4: Then the control back to the main function and the value 10 is assigned to variable i.
Step 5: printf("%d\n", --i); Here --i denoted pre-increement. Hence it prints the value 9.
#include<stdio.h> int main() { struct a { float category:5; char scheme:4; }; printf("size=%d", sizeof(struct a)); return 0; }
The char type: char scheme:4; is also a valid statement.
#include<stdio.h> int main() { struct emp { char name[20]; int age; float sal; }; struct emp e = {"Tiger"}; printf("%d, %f\n", e.age, e.sal); return 0; }
Comments
There are no comments.Copyright ©CuriousTab. All rights reserved.