public class ExceptionTest { class TestException extends Exception {} public void runTest() throws TestException {} public void test() /* Point X */ { runTest(); } }
Option A is wrong. If you compile the code as given the compiler will complain:
"unreported exception must be caught or declared to be thrown" The class extends Exception so we are forced to test for exceptions.
Option C is wrong. The catch statement belongs in a method body not a method specification.
Option D is wrong. TestException is a subclass of Exception therefore the test method, in this example, must throw TestException or some other class further up the Exception tree. Throwing RuntimeException is just not on as this belongs in the java.lang.RuntimeException branch (it is not a superclass of TestException). The compiler complains with the same error as in A above.
Option A is incorrect because a method-local inner class does not have to be declared final (although it is legal to do so).
C and D are incorrect because a method-local inner class cannot be made public (remember-you cannot mark any local variables as public), or static.
import java.io.*; public class MyProgram { public static void main(String args[]) { FileOutputStream out = null; try { out = new FileOutputStream("test.txt"); out.write(122); } catch(IOException io) { System.out.println("IO Error."); } finally { out.close(); } } }
public class Test { public static void main(String [] args) { int I = 1; do while ( I < 1 ) System.out.print("I is " + I); while ( I > 1 ) ; } }
class MyThread extends Thread { public static void main(String [] args) { MyThread t = new MyThread(); Thread x = new Thread(t); x.start(); /* Line 7 */ } public void run() { for(int i = 0; i < 3; ++i) { System.out.print(i + ".."); } } }
Option A is incorrect because the Thread class implements the Runnable interface; therefore, in line 7, Thread can take an object of type Thread as an argument in the constructor.
Option B and C are incorrect because the variable i in the for loop starts with a value of 0 and ends with a value of 2.
import java.awt.Button; class CompareReference { public static void main(String [] args) { float f = 42.0f; float [] f1 = new float[2]; float [] f2 = new float[2]; float [] f3 = f1; long x = 42; f1[0] = 42.0f; } }
(4) is correct because it is legal to compare integer and floating-point types.
(5) is correct because it is legal to compare a variable with an array element.
(3) is incorrect because f2 is an array object and f1[1] is an array element.
class Boo { Boo(String s) { } Boo() { } } class Bar extends Boo { Bar() { } Bar(String s) {super(s);} void zoo() { // insert code here } }
Option A is incorrect because it passes an int to the Boo constructor, and there is no matching constructor in the Boo class.
Option C is incorrect because it violates the rules of polymorphism—you cannot refer to a superclass type using a reference variable declared as the subclass type. The superclass is not guaranteed to have everything the subclass has.
Option D uses incorrect syntax.
public class Outer { public void someOuterMethod() { //Line 5 } public class Inner { } public static void main(String[] argv) { Outer ot = new Outer(); //Line 10 } }
Option B gives error - non-static variable cannot be referenced from a static context.
Option C package ot does not exist.
Option D gives error - non-static variable cannot be referenced from a static context.
public class Test178 { public static void main(String[] args) { String s = "foo"; Object o = (Object)s; if (s.equals(o)) { System.out.print("AAA"); } else { System.out.print("BBB"); } if (o.equals(s)) { System.out.print("CCC"); } else { System.out.print("DDD"); } } }
int i = (int) Math.random();
The value after the decimal point is lost when you cast a double to int and you are left with 0.
Comments
There are no comments.Copyright ©CuriousTab. All rights reserved.