class Test { public static void main(String [] args) { int x= 0; int y= 0; for (int z = 0; z < 5; z++) { if (( ++x > 2 ) && (++y > 2)) { x++; } } System.out.println(x + " " + y); } }
class BoolArray { boolean [] b = new boolean[3]; int count = 0; void set(boolean [] x, int i) { x[i] = true; ++count; } public static void main(String [] args) { BoolArray ba = new BoolArray(); ba.set(ba.b, 0); ba.set(ba.b, 2); ba.test(); } void test() { if ( b[0] && b[1] | b[2] ) count++; if ( b[1] && b[(++count - 2)] ) count += 7; System.out.println("count = " + count); } }
class SSBool { public static void main(String [] args) { boolean b1 = true; boolean b2 = false; boolean b3 = true; if ( b1 & b2 | b2 & b3 | b2 ) /* Line 8 */ System.out.print("ok "); if ( b1 & b2 | b2 & b3 | b2 | b1 ) /*Line 10*/ System.out.println("dokey"); } }
class Test { static int s; public static void main(String [] args) { Test p = new Test(); p.start(); System.out.println(s); } void start() { int x = 7; twice(x); System.out.print(x + " "); } void twice(int x) { x = x*2; s = x; } }
class BitShift { public static void main(String [] args) { int x = 0x80000000; System.out.print(x + " and "); x = x >>> 31; System.out.println(x); } }
Before: 1000 0000 0000 0000 0000 0000 0000 0000
After: 0000 0000 0000 0000 0000 0000 0000 0001
Option C is incorrect because the >>> operator zero fills the left bits, which in this case changes the sign of x, as shown.
Option B is incorrect because the output method print() always displays integers in base 10.
Option D is incorrect because this is the reverse order of the two output numbers.
class Test { public static void main(String [] args) { Test p = new Test(); p.start(); } void start() { boolean b1 = false; boolean b2 = fix(b1); System.out.println(b1 + " " + b2); } boolean fix(boolean b1) { b1 = true; return b1; } }
class Test { public static void main(String [] args) { int x= 0; int y= 0; for (int z = 0; z < 5; z++) { if (( ++x > 2 ) || (++y > 2)) { x++; } } System.out.println(x + " " + y); } }
public class Test { public static void leftshift(int i, int j) { i <<= j; } public static void main(String args[]) { int i = 4, j = 2; leftshift(i, j); System.out.printIn(i); } }
If you are clever you will spot that 16 is 4 multiplied by 2 twice, (4 * 2 * 2) = 16. If you had 16 left shifted by three bits then 16 * 2 * 2 * 2 = 128. If you had 128 right shifted by 2 bits then 128 / 2 / 2 = 32. Keeping these points in mind, you don't have to go converting to binary to do the left and right bit shifts.
class PassS { public static void main(String [] args) { PassS p = new PassS(); p.start(); } void start() { String s1 = "slip"; String s2 = fix(s1); System.out.println(s1 + " " + s2); } String fix(String s1) { s1 = s1 + "stream"; System.out.print(s1 + " "); return "stream"; } }
class PassA { public static void main(String [] args) { PassA p = new PassA(); p.start(); } void start() { long [] a1 = {3,4,5}; long [] a2 = fix(a1); System.out.print(a1[0] + a1[1] + a1[2] + " "); System.out.println(a2[0] + a2[1] + a2[2]); } long [] fix(long [] a3) { a3[1] = 7; return a3; } }
The reference variables a1 and a3 refer to the same long array object. When the [1] element is updated in the fix() method, it is updating the array referred to by a1. The reference variable a2 refers to the same array object.
So Output: 3+7+5+" "3+7+5
Output: 15 15 Because Numeric values will be added
public class X { public static void main(String [] args) { try { badMethod(); System.out.print("A"); } catch (Exception ex) { System.out.print("B"); } finally { System.out.print("C"); } System.out.print("D"); } public static void badMethod() {} }
Comments
There are no comments.Copyright ©CuriousTab. All rights reserved.