class Two { byte x; } class PassO { public static void main(String [] args) { PassO p = new PassO(); p.start(); } void start() { Two t = new Two(); System.out.print(t.x + " "); Two t2 = fix(t); System.out.println(t.x + " " + t2.x); } Two fix(Two tt) { tt.x = 42; return tt; } }
class Bitwise { public static void main(String [] args) { int x = 11 & 9; int y = x ^ 3; System.out.println( y | 12 ); } }
class SC2 { public static void main(String [] args) { SC2 s = new SC2(); s.start(); } void start() { int a = 3; int b = 4; System.out.print(" " + 7 + 2 + " "); System.out.print(a + b); System.out.print(" " + a + b + " "); System.out.print(foo() + a + b + " "); System.out.println(a + b + foo()); } String foo() { return "foo"; } }
Option A is wrong because it initializes an int array with String literals.
Option B is wrong because it use something other than curly braces for the initialization.
Option C is wrong because it provides initial values for only one dimension, although the declared array is a two-dimensional array.
(3) and (5) are wrong because you can't declare an array with a size. The size is only needed when the array is actually instantiated (and the JVM needs to know how much space to allocate for the array, based on the type of array and the size).
Option A is wrong because the keyword for the primitive int starts with a lowercase i.
Option C is wrong because "virtual" is a keyword in C++, but not Java.
Option D is wrong because "constant" is not a keyword. Constants in Java are marked static and final.
Option E is wrong because "include" is a keyword in C, but not in Java.
class Equals { public static void main(String [] args) { int x = 100; double y = 100.1; boolean b = (x = y); /* Line 7 */ System.out.println(b); } }
Option A, B, and D are incorrect because the code does not get as far as compiling. If we corrected this code, the output would be false.
class Test { public static void main(String [] args) { int x=20; String sup = (x < 15)? "small" : (x < 22)? "tiny" : "huge"; System.out.println(sup); } }
class Test { public static void main(String [] args) { Test p = new Test(); p.start(); } void start() { boolean b1 = false; boolean b2 = fix(b1); System.out.println(b1 + " " + b2); } boolean fix(boolean b1) { b1 = true; return b1; } }
class BitShift { public static void main(String [] args) { int x = 0x80000000; System.out.print(x + " and "); x = x >>> 31; System.out.println(x); } }
Before: 1000 0000 0000 0000 0000 0000 0000 0000
After: 0000 0000 0000 0000 0000 0000 0000 0001
Option C is incorrect because the >>> operator zero fills the left bits, which in this case changes the sign of x, as shown.
Option B is incorrect because the output method print() always displays integers in base 10.
Option D is incorrect because this is the reverse order of the two output numbers.
class Test { static int s; public static void main(String [] args) { Test p = new Test(); p.start(); System.out.println(s); } void start() { int x = 7; twice(x); System.out.print(x + " "); } void twice(int x) { x = x*2; s = x; } }
Comments
There are no comments.Copyright ©CuriousTab. All rights reserved.