Its parts are electron gun, resonator, repeller and output coupling.
It operates on the principle of positive feed back.
The repeller electrode is at negative potential and sends the partially bunched electron beam back to resonator cavity.
This positive feedback supports oscillations. Its feature are:
1. Frequency range - 2 to 100 GHz
2. Power output - 10 MW to about 2 W
3. Efficiency - 10 - 20 %
Its applications include radar receivers, local oscillator in microwave devices, oscillator for microwave measurements in laboratories etc.
Reason (R): GaAs exhibits transferred electron effect.
This effects is called transferred electron effect. The impedance of a Gunn diode is tens of ohms.
A Gunn diode oscillator has a resonant cavity, an arrangement to couple Gunn diode to cavity, biasing arrangement for Gunn diode and arrangement to couple RF power to load.
Applications of Gunn diode oscillator include continuous wave radar, pulsed radar and microwave receivers.
Reason (R): A positive feedback is necessary for sustained oscillations.
It has an electron gun and a helix structure. However the interaction between electron beam and RF wave is different than in TWT.
The growing RF wave travels in opposite direction to the electron beam.
The frequency of wave can be changed by changing the voltage which controls the beam velocity.
Moreover the amplitude of oscillations can be decreased continuously to zero by changing the beam current.
It features are:
1. Frequency range - 1 GHz to 1000 GHz.
2. Power output - 10 mV to 150 mW (continuous wave) 250kW (pulsed).
It is used as signal source in transmitters and instruments.
Comments
There are no comments.Copyright ©CuriousTab. All rights reserved.