List I | List II | ||
---|---|---|---|
A. | RF amplifier | 1. | Amplifier received carrier and sidebands |
B. | Loudspeaker | 2. | Gives acoustic output |
C. | Demodulator | 3. | Has IF input and AF output |
D. | IF amplifier | 4. | Fixed-tuned to intermediate frequency |
Reason (R): The frequency of oscillation of a backward wave oscillator can be changed by varying the voltage which controls the beam velocity.
It has an electron gun and a helix structure. However the interaction between electron beam and RF wave is different than in TWT.
The growing RF wave travels in opposite direction to the electron beam.
The frequency of wave can be changed by changing the voltage which controls the beam velocity.
Moreover the amplitude of oscillations can be decreased continuously to zero by changing the beam current.
It features are:
1. Frequency range - 1 GHz to 1000 GHz.
2. Power output - 10 mV to 150 mW (continuous wave) 250kW (pulsed).
It is used as signal source in transmitters and instruments.
Reason (R): A positive feedback is necessary for sustained oscillations.
It has an electron gun and a helix structure. However the interaction between electron beam and RF wave is different than in TWT.
The growing RF wave travels in opposite direction to the electron beam.
The frequency of wave can be changed by changing the voltage which controls the beam velocity.
Moreover the amplitude of oscillations can be decreased continuously to zero by changing the beam current.
It features are:
1. Frequency range - 1 GHz to 1000 GHz.
2. Power output - 10 mV to 150 mW (continuous wave) 250kW (pulsed).
It is used as signal source in transmitters and instruments.
Reason (R): When one or more intermediate cavities are used the bandwidth can be increased.
An electron beam is produced by oxide coated indirectly heated cathode and is focussed and accelerated by focussing electrode.
This beam is transmitted through a glass tube. The input cavity where the beam enters the glass tube is called buncher.
As electrons move ahead they see an accelerating field for half cycle and retarding field for the other half cycle.
Therefore, some electrons are accelerated and some are retarded. This process is called velocity modulation.
The velocity modulation causes bunching of electrons. This bunching effect converts velocity modulation into density modulation of beam.
The input is fed at buncher cavity and output is taken at catcher cavity.
In a two cavity klystron only buncher and catcher cavity are used. In multi cavity klystron one or more intermediate cavities are also used.
The features of a multicavity klystron are :
1. Frequency range - 0.25 GHz to 100 GHz
2. Power output - 10 kW to several hundred kW
3. Power gain - 60 dB (nominal value)
4. Efficiency - about 40%.
A multicavity klystron is used in UHF TV transmitters, Radar transmitter and satellite communication.
Reason (R): Impatt diode has a low resistance.
It exhibits negative resistance and operates on the principle of avalanche breakdown.
Impatt diode circuits are classified as broadly tunable circuit, low Q circuit and high Q circuit.
The impedance of Impatt diode is a few ohms. The word Impatt stands for Impact Avalanche Transit Time diode.
The features of Impatt diode oscillator are : frequency 1 to 300 GHz, Power output (0.5 W to 5 W for single diode circuit and upto 40 W for combination of several diodes), efficiency about 20%.
Its applications include police radar systems, low power microwave transmitter etc.
List I (Roots in s plane) | List II (Impulse response) | ||
---|---|---|---|
A. | Two imaginary roots | 1. | ![]() |
B. | Two complex roots in right half plane | 2. | ![]() |
C. | A single root on negative real axis | 3. | ![]() |
D. | A single root at origin | 4. | ![]() |
Comments
There are no comments.Copyright ©CuriousTab. All rights reserved.